Pathogen Entrapment by Transglutaminase—A Conserved Early Innate Immune Mechanism
نویسندگان
چکیده
Clotting systems are required in almost all animals to prevent loss of body fluids after injury. Here, we show that despite the risks associated with its systemic activation, clotting is a hitherto little appreciated branch of the immune system. We compared clotting of human blood and insect hemolymph to study the best-conserved component of clotting systems, namely the Drosophila enzyme transglutaminase and its vertebrate homologue Factor XIIIa. Using labelled artificial substrates we observe that transglutaminase activity from both Drosophila hemolymph and human blood accumulates on microbial surfaces, leading to their sequestration into the clot. Using both a human and a natural insect pathogen we provide functional proof for an immune function for transglutaminase (TG). Drosophila larvae with reduced TG levels show increased mortality after septic injury. The same larvae are also more susceptible to a natural infection involving entomopathogenic nematodes and their symbiotic bacteria while neither phagocytosis, phenoloxidase or-as previously shown-the Toll or imd pathway contribute to immunity. These results firmly establish the hemolymph/blood clot as an important effector of early innate immunity, which helps to prevent septic infections. These findings will help to guide further strategies to reduce the damaging effects of clotting and enhance its beneficial contribution to immune reactions.
منابع مشابه
Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense.
Phylogenetically conserved serine protease cascades play an important role in invertebrate and vertebrate immunity. The mammalian coagulation system can be traced back some 400 million years and shares homology with ancestral serine proteinase cascades that are involved in, for example, Toll receptor signaling in insects and release of antimicrobial peptides during hemolymph clotting. In the pr...
متن کاملToll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity.
Innate immunity is an ancient form of host defense that is shared by almost all multicellular organisms (1, 2). However, it is not a redundant defense mechanism, and recent evidence has shown that innate immunity not only provides a first line of antimicrobial host defense, but also has a profound impact on the establishment of adaptive immune responses (1, 3). Upon infection, microorganisms ar...
متن کاملA Mechanism for the Inhibition of DNA-PK-Mediated DNA Sensing by a Virus
The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kin...
متن کاملEffector triggered immunity
Pathogenic bacteria produce virulence factors called effectors, which are important components of the infection process. Effectors aid in pathogenesis by facilitating bacterial attachment, pathogen entry into or exit from the host cell, immunoevasion, and immunosuppression. Effectors also have the ability to subvert host cellular processes, such as hijacking cytoskeletal machinery or blocking p...
متن کاملToll-Like receptors (TLRs) and their ligands.
The innate immune system is an evolutionally conserved host defense mechanism against pathogens. Innate immune responses are initiated by pattern recognition receptors (PRRs), which recognize microbial components that are essential for the survival of the microorganism. PRRs are germline-encoded, nonclonal, and expressed constitutively in the host. Different PRRs react with specific ligands and...
متن کامل